Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
3.
J Med Virol ; 95(1): e28393, 2023 01.
Article in English | MEDLINE | ID: covidwho-2157849

ABSTRACT

The aim of this study was to evaluate the effect and safety of N-acetylcysteine (NAC) inhalation spray in the treatment of patients with coronavirus disease 2019 (COVID-19). This randomized controlled clinical trial study was conducted on patients with COVID-19. Eligible patients (n = 250) were randomly allocated into the intervention group (routine treatment + NAC inhaler spray one puff per 12 h, for 7 days) or the control group who received routine treatment alone. Clinical features, hemodynamic, hematological, biochemical parameters and patient outcomes were assessed and compared before and after treatment. The mortality rate was significantly higher in the control group than in the intervention group (39.2% vs. 3.2%, p < 0.001). Significant differences were found between the two groups (intervention and control, respectively) for white blood cell count (6.2 vs. 7.8, p < 0.001), hemoglobin (12.3 vs. 13.3, p = 0.002), C-reactive protein (CRP: 6 vs. 11.5, p < 0.0001) and aspartate aminotransferase (AST: 32 vs. 25.5, p < 0.0001). No differences were seen for hospital length of stay (11.98 ± 3.61 vs. 11.81 ± 3.52, p = 0.814) or the requirement for intensive care unit (ICU) admission (7.2% vs. 11.2%, p = 0.274). NAC was beneficial in reducing the mortality rate in patients with COVID-19 and inflammatory parameters, and a reduction in the development of severe respiratory failure; however, it did not affect the length of hospital stay or the need for ICU admission. Data on the effectiveness of NAC for Severe Acute Respiratory Syndrome Coronavirus-2 is limited and further research is required.


Subject(s)
Acetylcysteine , COVID-19 , Oral Sprays , Humans , Acetylcysteine/administration & dosage , Acetylcysteine/adverse effects , COVID-19/therapy , Length of Stay , SARS-CoV-2 , Treatment Outcome , Administration, Inhalation , Nebulizers and Vaporizers
4.
Microbiol Spectr ; 10(5): e0168222, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2053137

ABSTRACT

Primary care urgently needs treatments for coronavirus disease 2019 (COVID-19) patients because current options are limited, while these patients who do not require hospitalization encompass more than 90% of the people infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we evaluated a throat spray containing three Lactobacillaceae strains with broad antiviral properties in a randomized, double-blind, placebo-controlled trial. Before the availability of vaccines, 78 eligible COVID-19 patients were randomized to verum (n = 41) and placebo (n = 37) within 96 h of a positive PCR-based SARS-CoV-2 diagnosis, and a per-protocol analysis was performed. Symptoms and severity were reported daily via an online diary. Combined nose-throat swabs and dried blood spots were collected at regular time points in the study for microbiome, viral load, and antibody analyses. The daily reported symptoms were highly variable, with no added benefit for symptom resolution in the verum group. However, based on 16S V4 amplicon sequencing, the acute symptom score (fever, diarrhea, chills, and muscle pain) was significantly negatively associated with the relative abundance of amplicon sequence variants (ASVs) that included the applied lactobacilli (P < 0.05). Furthermore, specific monitoring of these applied lactobacilli strains showed that they were detectable via quantitative PCR (qPCR) analysis in 82% of the patients in the verum group. At the end of the trial, a trend toward lower test positivity for SARS-CoV-2 was observed for the verum group (2/30; 6.7% positive) than for the placebo group (7/27; 26% positive) (P = 0.07). These data indicate that the throat spray with selected antiviral lactobacilli could have the potential to reduce nasopharyngeal viral loads and acute symptoms but should be applied earlier in the viral infection process and substantiated in larger trials. IMPORTANCE Viral respiratory tract infections result in significant health and economic burdens, as highlighted by the COVID-19 pandemic. Primary care patients represent 90% of those infected with SARS-CoV-2, yet their treatment options are limited to analgesics and antiphlogistics, and few broadly acting antiviral strategies are available. Microbiome or probiotic therapy is a promising emerging treatment option because it is based on the multifactorial action of beneficial bacteria against respiratory viral disease. In this study, an innovative topical throat spray with select beneficial lactobacilli was administered to primary COVID-19 patients. A remote study setup (reducing the burden on hospitals and general practitioners) was successfully implemented using online questionnaires and longitudinal self-sampling. Our results point toward the potential mechanisms of action associated with spray administration at the levels of viral loads and microbiome modulation in the upper respiratory tract and pave the way for future clinical applications of beneficial bacteria against viral diseases.


Subject(s)
COVID-19 Drug Treatment , Humans , Antiviral Agents/therapeutic use , COVID-19 Testing , Lactobacillus , Outpatients , Pandemics/prevention & control , Pharynx , SARS-CoV-2 , Treatment Outcome , Oral Sprays
5.
Trials ; 22(1): 127, 2021 Feb 10.
Article in English | MEDLINE | ID: covidwho-1629960

ABSTRACT

OBJECTIVES: The objective of the study is to measure the efficacy of ionic-iodine polymer complex [1] for clinical and radiological improvement in coronavirus disease 2019 (COVID-19) patients. TRIAL DESIGN: The trial will be closed label, randomized and placebo-controlled with a 1:1:1:1 allocation ratio and superiority framework. PARTICIPANTS: All PCR confirmed COVID-19 adult patients including non-pregnant females, with mild to moderate disease, will be enrolled from Shaikh Zayed Post-Graduate Medical Complex, Ali Clinic and Doctors Lounge in Lahore (Pakistan). Patients with any pre-existing chronic illness will be excluded from the study. INTERVENTION AND COMPARATOR: In this multi-armed study ionic-iodine polymer complex with 200 mg of elemental iodine will be given using three formulations to evaluate efficacy. Patients will be receiving either encapsulated iodine complex of 200 mg (arm A), iodine complex syrup form 40 ml (arm B), iodine complex throat spray of 2 puffs (arm C) or empty capsule (arm D) as placebo; all three times a day. All the 4 arms will be receiving standard care as per version 3.0 of the clinical management guidelines for COVID-19 established by the Ministry of National Health Services of Pakistan. MAIN OUTCOMES: Primary outcomes will be viral clearance with radiological and clinical improvement. SARS-CoV-2 RT-PCR and HRCT chest scans will be done on the admission day and then after every fourth day for 12 days or till the symptoms are resolved. RT-PCR will only be shown as positive or negative while HRCT chest scoring will be done depending on the area and severity of lung involvement [2]. Time taken for the alleviation of symptoms will be calculated by the number of days the patient remained symptomatic. 30-day mortality will be considered as a secondary outcome. RANDOMISATION: Stratification for initial COVID-19 status (or days from initial symptoms as a proxy), age groups, gender, baseline severity of symptoms and co-morbidities will be used to ensure that the study arms remain balanced in size for the 1:1:1:1 allocation ratio. Randomization will be done using the lottery method. As patients are being admitted at different times, they will be recruited after obtaining their voluntary written informed consent following all standard protocols of the infection, control and disinfection. BLINDING (MASKING): This is a quadruple (participants, care providers, investigators and outcomes assessors) blinded study where only the study's Primary Investigator will have information about the arms and their interventions. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): 200 patients will be randomized into four groups with three experimental and one placebo arm. TRIAL STATUS: Protocol Version Number is 2.3 and it is approved from IRB Shaikh Zayed Hospital with ID SZMC/IRB/Internal0056/2020 on July 14th, 2020. The recruitment is in progress. It was started on July 30, 2020, and the estimated end date for the trial is August 15, 2021. TRIAL REGISTRATION: Clinical Trial has been retrospectively registered on www.clinicaltrials.gov with registration ID NCT04473261 dated July 16, 2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). With the intention of expediting dissemination of this trial, the conventional formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines.


Subject(s)
COVID-19 Drug Treatment , Iodine Compounds/administration & dosage , Polymers/administration & dosage , SARS-CoV-2/genetics , Severity of Illness Index , Adult , COVID-19/epidemiology , COVID-19/mortality , Capsules , Female , Humans , Male , Oral Sprays , Pakistan/epidemiology , Patient Admission , Randomized Controlled Trials as Topic , Reverse Transcriptase Polymerase Chain Reaction , Treatment Outcome
6.
Int J Environ Res Public Health ; 18(10)2021 05 11.
Article in English | MEDLINE | ID: covidwho-1328101

ABSTRACT

BACKGROUND: nasal or oral sprays are often marketed as medical devices (MDs) in the European Union to prevent common cold (CC), with ColdZyme®/Viruprotect® (trypsin/glycerol) mouth spray claiming to prevent colds and the COVID-19 virus from infecting host cells and to shorten/reduce CC symptoms as an example. We analyzed the published (pre)-clinical evidence. METHODS: preclinical: comparison of in vitro tests with validated host cell models to determine viral infectivity. Clinical: efficacy, proportion of users protected against virus (compared with non-users) and safety associated with trypsin/glycerol. RESULTS: preclinical data showed that exogenous trypsin enhances SARS-CoV-2 infectivity and syncytia formation in host models, while culture passages in trypsin presence induce spike protein mutants. The manufacturer claims >98% SARS-CoV-2 deactivation, although clinically irrelevant as based on a tryptic viral digest, inserting trypsin inactivation before host cells exposure. Efficacy and safety were not adequately addressed in clinical studies or leaflets (no COVID-19 data). Protection was obtained among 9-39% of users, comparable to or lower than placebo-treated or non-users. Several potential safety risks (tissue digestion, bronchoconstriction) were identified. CONCLUSIONS: the current European MD regulations may result in insufficient exploration of (pre)clinical proof of action. Exogenous trypsin exposure even raises concerns (higher SARS-CoV-2 infectivity, mutations), whereas its clinical protective performance against respiratory viruses as published remains poor and substandard.


Subject(s)
COVID-19 , Common Cold , European Union , Humans , Medical Device Legislation , Mutation , Oral Sprays , SARS-CoV-2 , Trypsin
7.
J Biomater Sci Polym Ed ; 32(11): 1466-1471, 2021 08.
Article in English | MEDLINE | ID: covidwho-1216507

ABSTRACT

Polyanions are negatively charged macromolecules known for several decades as inhibitors of many viruses in vitro, notably AIDS virus. In the case of enveloped viruses, this activity was assigned to the formation of a polyelectrolyte complex between an anionic species, the polyanion, and the spike cationic proteins which are, for polymer chemists, comparable to cationic polyelectrolytes. Unfortunately, in vitro antiviral activity was not confirmed in vivo, possibly because polyanions were captured by cationic blood elements before reaching target cells. Accordingly, virologists abandoned the use of polyanions for antiviral therapy. In the case of coronaviruses like SARS-CoV-2 and its mutants the game may not be over because these viruses infect cells of airways and not of blood. This communication proposes strategies to use polysulfates to attack and inhibit viral particles before they reach target cells in the airways. For this, polysulfate solutions may be administered by spray, gargling and nebulization or used to capture virus-containing droplets and aerosols by bubbling when these vectors are in the atmosphere. The technical means exist. However, biocompatibility and biofunctionality tests are necessary in the case of airways. Such tests require manipulation of pathogens, something which is beyond the competences of a biomaterialist. For this, a specialist in virology is necessary. Attempts to find one failed so far despite all-around solicitations over the past ten months and despite the fact that attacking the virus with polysulfates may complement beneficially the defensive strategies based on masks, vaccines and hospitals.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Polyelectrolytes/pharmacology , SARS-CoV-2/drug effects , Sulfates/pharmacology , Air Microbiology , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , COVID-19/prevention & control , Humans , Nebulizers and Vaporizers , Oral Sprays , Polyelectrolytes/administration & dosage , Polyelectrolytes/chemistry , SARS-CoV-2/genetics , Sulfates/administration & dosage , Sulfates/chemistry
8.
mBio ; 12(2)2021 04 27.
Article in English | MEDLINE | ID: covidwho-1206005

ABSTRACT

SARS-CoV-2 infection causing the COVID-19 pandemic calls for immediate interventions to avoid viral transmission, disease progression, and subsequent excessive inflammation and tissue destruction. Primary normal human bronchial epithelial cells are among the first targets of SARS-CoV-2 infection. Here, we show that ColdZyme medical device mouth spray efficiently protected against virus entry, excessive inflammation, and tissue damage. Applying ColdZyme to fully differentiated, polarized human epithelium cultured at an air-liquid interphase (ALI) completely blocked binding of SARS-CoV-2 and increased local complement activation mediated by the virus as well as productive infection of the tissue model. While SARS-CoV-2 infection resulted in exaggerated intracellular complement activation immediately following infection and a drop in transepithelial resistance, these parameters were bypassed by single pretreatment of the tissues with ColdZyme mouth spray. Crucially, our study highlights the importance of testing already evaluated and safe drugs such as ColdZyme mouth spray for maintaining epithelial integrity and hindering SARS-CoV-2 entry within standardized three-dimensional (3D) in vitro models mimicking the in vivo human airway epithelium.IMPORTANCE Although our understanding of COVID-19 continuously progresses, essential questions regarding prophylaxis and treatment remain open. A hallmark of severe SARS-CoV-2 infection is a hitherto-undescribed mechanism leading to excessive inflammation and tissue destruction associated with enhanced pathogenicity and mortality. To tackle the problem at the source, transfer of SARS-CoV-2, subsequent binding, infection, and inflammatory responses have to be avoided. In this study, we used fully differentiated, mucus-producing, and ciliated human airway epithelial cultures to test the efficacy of ColdZyme medical device mouth spray in terms of protection from SARS-CoV-2 infection. Importantly, we found that pretreatment of the in vitro airway cultures using ColdZyme mouth spray resulted in significantly shielding the epithelial integrity, hindering virus binding and infection, and blocking excessive intrinsic complement activation within the airway cultures. Our in vitro data suggest that ColdZyme mouth spray may have an impact in prevention of COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Respiratory Mucosa/drug effects , SARS-CoV-2/drug effects , Bronchi/cytology , COVID-19/prevention & control , COVID-19/virology , Complement C3/immunology , Epithelial Cells , Humans , Immunity, Innate/drug effects , Nasal Mucosa/drug effects , Nasal Mucosa/immunology , Nasal Mucosa/virology , Oral Sprays , Respiratory Mucosa/immunology , Respiratory Mucosa/virology , SARS-CoV-2/physiology , Virus Attachment/drug effects
9.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L750-L756, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1076012

ABSTRACT

Pharmaceutical interventions are urgently needed to prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and transmission. As SARS-CoV-2 infects and spreads via the nasopharyngeal airways, we analyzed the antiviral effect of selected nasal and oral sprays on virus infection in vitro. Two nose sprays showed virucidal activity but were cytotoxic precluding further analysis in cell culture. One nasal and one mouth spray suppressed SARS-CoV-2 infection of TMPRSS2-expressing Vero E6 cells and primary differentiated human airway epithelial cultures. The antiviral activity in both sprays could be attributed to polyanionic ι- and κ-carrageenans. Thus, application of carrageenan-containing nasal and mouth sprays may reduce the risk of acquiring SARS-CoV-2 infection and may limit viral spread, warranting further clinical evaluation.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19/prevention & control , Carrageenan/pharmacology , SARS-CoV-2/drug effects , Adult , Animals , Cell Line , Chlorocebus aethiops , Epithelial Cells/drug effects , Epithelial Cells/virology , Female , Humans , Male , Middle Aged , Nasal Sprays , Oral Sprays , Serine Endopeptidases/metabolism , Vero Cells
10.
Acta Biomed ; 91(13-S): e2020022, 2020 11 09.
Article in English | MEDLINE | ID: covidwho-918593

ABSTRACT

BACKGROUND AND AIM OF THE WORK: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the current pandemics. This virus attacks the cells by binding to the transmembrane angiotensin I converting enzyme 2. In this study, we experimented a food supplement containing alpha-cyclodextrin and hydroxytyrosol for the improvement of the defenses against the SARS-CoV-2. Hydroxytyrosol has anti-viral properties and is able to reduce the serum lipids in mice. α-cyclodextrin has the ability to deplete sphingolipids and phospholipids from the cellular membranes. The aim of the present preliminary open non-controlled interventional study was to evaluate the efficacy of alpha-cyclodextrin and hydroxytyrosol in improving defenses against SARS-CoV-2. METHODS: Fifty healthy volunteers at a higher risk of SARS-CoV-2 infection from Northern Cyprus and six positive individuals for SARS-CoV-2 were enrolled in this study. The in silico prediction was performed using D3DOCKING to evaluate the interactions of hydroxytyrosol and alpha-cyclodextrin with proteins involved in the SARS-CoV-2 endocytosis. RESULTS: The 50 volunteers did not become positive in 15 days for SARS-CoV-2 after the administration of the compound for two weeks, despite they were at higher risk of infection than the general population. Interestingly, in the cohort of six positive patients, two patients were administered the spray and became negative after five days, despite the viral load was higher in the treated subjects than the untreated patients who became negative after ten days. In addition, we identified possible interactions among hydroxytyrosol and alpha-cyclodextrin with the protein Spike and the human proteins ACE2 and TMPRSS2. CONCLUSIONS: We reported on the results of the possible role of alpha-cyclodextrin and hydroxytyrosol in improving defenses against SARS-CoV-2. The next step will be the administration of the compound to a larger cohort in a controlled study to confirm the reduction of the infection rate of SARS-CoV-2 in the treated subjects.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Pandemics/prevention & control , Phenylethyl Alcohol/analogs & derivatives , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , alpha-Cyclodextrins/therapeutic use , Adult , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Cyprus , Endocytosis/drug effects , Female , Humans , Male , Middle Aged , Oral Sprays , Phenylethyl Alcohol/therapeutic use , Pilot Projects , Pneumonia, Viral/diagnosis , SARS-CoV-2 , Viral Load , COVID-19 Drug Treatment
11.
Acta Biomed ; 91(13-S): e2020009, 2020 11 09.
Article in English | MEDLINE | ID: covidwho-918592

ABSTRACT

BACKGROUND AND AIM OF THE WORK: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the current pandemics of coronavirus disease. This virus is able to attack the cells of the airway epithelium by binding to the transmembrane angiotensin I converting enzyme 2 (ACE2). We developed an oral spray that could inhibit the SARS-CoV-2 endocytosis. The spray contains hydroxytyrosol for its anti-viral, anti-inflammatory and anti-oxidant properties, and α-cyclodextrin for its ability to deplete sphingolipids, that form the lipid rafts where ACE2 localizes. The aim of the present pilot multi-centric open non-controlled observational study was to evaluate the safety profile of the "Endovir Stop" spray. METHODS: An MTT test was performed to evaluate cytotoxicity of the spray in two human cell lines. An oxygen radical absorbance capacity assay was performed to evaluate the antioxidant capacity of the spray. The spray was also tested on 87 healthy subjects on a voluntary basis. RESULTS: The MTT test revealed that the spray is not cytotoxic. The ORAC assay showed a good antioxidant capacity for the spray. Endovir Stop tested on healthy volunteers showed the total absence of side effects and drug interactions during the treatment. CONCLUSIONS: We demonstrated that Endovir Stop spray is safe. The next step would be the administration of the efficacy of the spray by testing it to a wider range of people and see whether there is a reduced infection rate of SARS-CoV-2 in the treated subjects than in the non-treated individuals.


Subject(s)
Antiviral Agents/adverse effects , Betacoronavirus , Coronavirus Infections/drug therapy , Endocytosis/drug effects , Phenylethyl Alcohol/analogs & derivatives , Pneumonia, Viral/drug therapy , alpha-Cyclodextrins/adverse effects , Adult , Aged , Aged, 80 and over , COVID-19 , Caco-2 Cells , Cell Culture Techniques , Female , Humans , Male , Middle Aged , Oral Sprays , Pandemics , Phenylethyl Alcohol/adverse effects , Pilot Projects , SARS-CoV-2 , Young Adult , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL